

ACADEMIC YEAR 2018-2020

CENTRE FOR ENVIRONMENT INSTITUTE OF SCIENCE & TECHNOLOGY (Autonomous) JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

COURSE STRUCTURE AND SYLLABUS

M.Tech (ENVIRONMENTAL GEOMATICS)

(5+2 PATTERN)

CENTRE FOR ENVIRONMENT INSTITUTE OF SCIENCE & TECHNOLOGY JAWAHARLALA NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD KUKATPALLY: HYDERABAD – 500 085.

Vision:

- To disseminate advance knowledge by providing effective instruction and innovative research in environmental science and technology by promoting inter-disciplinary studies and research.
- To respond and to find technological solutions for pollution monitoring, abatement and control through innovation in environmental chemistry, environmental biotechnology and Environmental Geomatics.
- To maintain and develop liaison/collaboration with reputed universities, R&D organizations, industries and consultancy firms in India and abroad.

Mission:

- Producing highly motivated, technically competent, morally strong graduates with deep roots in our culture and with ability to respond to global challenges, thereby delighting all stakeholders namely parents, employers and humanity at large.
- To excel as a centre of Higher Education and Research in the field of Environmental Science & Technology.

Blooms Taxonomy:

ACADEMIC YEAR 2017-2018 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD CENTRE FOR ENVIRONMENT INSTITUTE OF SCIENCE & TECHNOLOGY (Autonomous) COURSE STRUCTURE AND SYLLABUS M.Tech (ENVIRONMENTAL GEOMATICS) (5+2 PATTERN)

PROGRAMME EDUCATION OBJECTIVES:

To provide the engineering graduates and science post graduates with technical expertise in Environmental Geomatics which will enable them to have a career and professional accomplishment by allowing them to work in multidisciplinary/interdisciplinary areas in the public or private sector. The program educational objectives of the **M. Tech (Environmental Geomatics)** are:

- **PEO1:** To provide students with fundamental knowledge and skills in the Geomatics discipline especially for Environmental protection and Management.
- **PEO2:** To generate trained manpower in the applied areas of Environmental Geomatics, and prepare students for a profession in geospatial science and technology in concurrence with the policies of Government of India.
- **PEO3:** To demonstrate knowledge and skills product interpretation, analysis, integration with GIS and GNSS and management of geospatial database for land parcels surveying, environmental planning and in EIA studies as per the norms of Ministry of Environment, Forest and Climate change.
- **PEO4:** To acquire the ability to start entrepreneurship in the geospatial industry.
- **PEO5:** To get involved with state, national, and international organizations, to place the students in their mission projects and industry employability.

PROGRAM OUTCOMES:

- **PO1**: Ability to independently carry out research/investigation and development work to solve practical problems.
- **PO2**: Ability to write and present a substantial technical report/document.
- **PO3**: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4: To Train and make the student ready with appropriate skills and technologies with special reference to Geomatics industry and sustainable environment development.

Program Educational Objectives (PEOs)

The program educational objectives are

- **PEO 1:** To provide students with fundamental knowledge and skills in the Geomatics discipline especially for Environmental protection and Management.
- **PEO 2:** To generate trained manpower in the applied areas of Environmental Geomatics, and prepare students for a profession in geospatial science and technology in concurrence with the policies of Government of India.
- **PEO 3:** To demonstrate knowledge and skills product interpretation, analysis, integration with GIS and GNSS and management of geospatial database for land parcels surveying, environmental planning and in EIA studies as per the norms of Ministry of Environment, Forest and Climate change.
- **PEO 4:** To acquire the ability to start entrepreneurship in the geospatial industry.
- **PEO 5:** To get involved with state, national, and international organizations, to place the students in their mission projects and industry employability.

Program Outcomes (POs) are as follows

- **PO1**: Ability to independently carry out research/investigation and development work to solve practical problems.
- PO2: Ability to write and present a substantial technical report/document.
- **PO3**: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- **PO4**: To Train and make the student ready with appropriate skills and technologies with special reference to Geomatics industry and sustainable environment development.

Course	Category	Course Title	Int.	Ext.	L	Р	С
Code			marks	marks			
EGM-101	Core Course I	Principles of Geospatial Technology	25	75	4		4
EGM-102	Core Course II	Remote sensing and Image interpretation	25	75	4		4
EGM-103	Core Course III	Surveying, Photogrammetry and Cartography	25	75	4		4
EGM-104	Core Elective I	 Digital Image Processing Smart Cities and GIS Climate Change and Sustainable Development 	25	75	4		4
EGM-105	Open Elective I	 Programming with open source GIS Geodetic Techniques and GNSS 	25	75	4		4
EGM-106	Laboratory I	Image Processing and Feature Extraction Lab	25	75	-	6	3
EGM-107	Laboratory II	Digital Photogrammetry Lab	25	75		6	3
	Seminar I	Seminar	50			4	2
	Total Credits				20	16	28

I YEAR – I SEMESTER

I YEAR – II SEMESTER

	Category	Course Title	Int.	Ext.	L	Р	С
			marks	marks			
EGM-201	Core Course IV	Geographical Information Systems	25	75	4		4
EGM-202	Core Course V	Environmental Impact Assessment	25	75	4		4
EGM-203	Core Course VI	Applied Geomatics	25	75	4		4
EGM-204	Core Elective II	1. Microwave and Hyper spectral remote sensing	25	75	4		4
		2. Cadastral, Land use Planning and Management					
EGM-205	Open Elective II	1. Geomatics for Disaster Risk Reduction &	25	75	4		4
		Management					
		2. Digital Photogrammetry					
		3. Remote Sensing for Vegetation					
EGM-206	Laboratory III	GIS, GNSS and Spectral analysis Lab	25	75	-	6	4
EGM-207	Laboratory IV	Geospatial Technology Lab	25	75		6	2
	Seminar II	Seminar	50			4	2
	Total Credits				20	16	28

II YEAR - III SEMESTER

Course Title	Int. marks	Ext. marks	L	Р	С
Comprehensive Viva-Voce		100			4
Project work Review	50			24	12
Total Credits				24	16

II YEAR – IV SEMESTER

Course Title	Int. marks	Ext. marks	L	Р	С
Project work Review II	50			8	4
Project Evaluation (Viva-Voce)		100		16	12
Total Credits				24	16

Total Credits = 88

M. TECH. -ENVIRONMENTAL MANAGEMENT COURSE STRUCTRURE I YEAR I SEMESTER

Course Title	PRINCIPLES	PRINCIPLES OF GEOSPATIAL TECHNOLOGY			
Course code	EGM-101	No. of credits	04		
Centre/ Department	Centre for Environment, IST, JNTUH				
Program	M. Tech : Environmental Geomatics				
Course type	Core Course I				
Course Outcome	At the end of the course, The student will be able to				
(COs)	C111.1: Describe the geospatial technologies, infrastructure and data				
	generation techniques.				
	C111.2: List techniques of mapping, positioning and earth's features to				
	the scale and to the refe	rence system.			
	C111.3: Relate variou	us GPS Technologies	in obtaining positional		
	accuracies of earth surfa	ace features.			
	C111.4: Define scope	of remote sensing, analy	sis methods. Categorize		
	data analysis methods and required hardware and software.				
	C111.5: Demonstrate GST for land and water resources and in				
	governance.				

UNIT I: INTRODUCTION:

Geospatial data, spatial data infrastructure, three important geospatial technologies, Spatial elements. Methods of spatial data generation.

UNIT II: COORDINATE SYSTEMS AND DATUMS:

Coordinates and coordinate systems, Datum's and geodetic systems, Coordinate transformations. Geodetic datum's, Geodetic reference system, choosing spatial frame work.

UNIT III: GLOBAL POSITIONING SYSTEM:

Introducing the Global Positioning System, Fundamentals of GPS signals and data, GPS mathematical models, GPS projects: some planning issues.

UNIT IV: REMOTE SENSING & GIS:

Definition and Scope, Remote Sensing, Principles, Remote Sensing data acquisition, Remote Sensing data analysis methods, Advantages and Limitations, Geographic Information Systems (GIS) and science, Fundamentals of Geographic Information Systems, Geographic data structures, Hardware and Software required.

UNIT V: GIS & GST APPLICATIONS:

Spatial data and modeling, Case studies relating Land and Water resources.GST for Environmental, Social, Local Government and Commercial applications.

Books Recommended

1. Textbook of Remote Sensing and Geographical Information Systems M. Anji Reddy, BS

Publication.

- Manual of Geospatial Science & Technology edited by John D. Bossler (Taylor & Francis).
- 3. Fundamentals of GIS by MICHAEL N DEMERS. Published By john Wiley & Sons Inc.
- 4. Environmental Modeling with GIS, Michael F. Goodchild, Bradley O. Parks, Louis T. Stewart
- 5. Geographic Information Systems: A Management Perspective by Stan Arnoff.

Course Title	REMOTE SENSING & IMAGE INTERPRETATION			
Course The	KENIO I E	SEIGHIO & IMAGE I		
Course code	EGM-102	No. of credits	04	
Centre/ Department	Centre for Environ	ment, IST, JNTUH		
Program	M. Tech : Environ	mental Geomatics		
Course type	Core Course II			
Course outcomes	At the end of the	course, The student will	be able to	
(COs)	C112.1: Identify	the interaction of elec	ctromagnetic spectrum with	
	atmospheric intera	ctions on earth surface ma	aterials.	
	C112.2: Interpret	remote sensing systems,	sensors and their capabilities	
	with varied resolut	ions.		
	C112.3: Extract	different features from	the satellite imageries and	
	analyze various da	ta products		
	CI12.4: Discrim	inate factors affecting	microwave measurements	
	C112 5. Integrate	e and air borne radar syste	ems	
	LULC and agricult	application of multi-sp tural/Forest applications	ectial images in analysis of	
		iural/Porest applications.		
UNIT I: BASIC PRIN	CIPLES			
i. Introduction. Ele	ectromagnetic Remo	te Sensing Process, Physi	cs of Radiant Energy:	
ii. Nature of Electr	omagnetic Radiation	n. Electromagnetic Spectr	um. Energy Source and its	
Characteristics,	0	, , , , , , , , , , , , , , , , , , , ,		
iii. Atmospheric Int	eractions with Electr	romagnetic Radiation: At	nospheric Properties,	
iv. Absorption Ozor	ne, Atmospheric Eff	ects on Spectral Response	Patterns.	
Energy Interactions with	n Earth's Surface Ma	aterials: Spectral Reflecta	nce Curves. Cosine Law	
UNIT II: REMOTE SI	ENSING SYSTEM	AND SENSOR PARAM	1ETERS	
i. Introduction, Sa	tellite System Parar	neters: Instrumental Para	meters, Viewing Parameters.	
Sensor Paramete	rs, Spatial Resolution	on, Spectral Resolution, R	adio metric resolution.	
ii. Imaging Sensor	Systems: Multispect	tral imaging sensor systen	18,	
iii. Thermal sensing	systems, microwav	e image systems.		
Latest Trends in Remote	Sensing Platforms	and sensors: Examples of	different satellites and sensors	
UNIT III: VISUAL IN	IAGE INTERPRE	TATION AND FEATUR	REEXTRACTION	
1. Introduction, Iy	pes of Pictoral Data	Products, Image interpret	ation strategy: Levels of	
interpretation Ke	eys. Systematotical Inte	munitation of Assist Dhots	Companyal managed una for	
nhoto interpretat	ion Three dimension	repretation of Aerial Photo anal interpretation Method	, General procedure for	
iii Basic elements c	oto interpretation, I hree dimensional interpretation Method.			
iv Interpretation of	Satellite Imagery K	Cev Flements of Visual In	age Interpretation Concept	
of Converging F	ving Evidence			
UNIT IV: MICROWA	UNIT IV. MICROWAVE AND HYPERSPECTRAL REMOTE SENSING.			
i. Introduction Th	e Radar Principle. F	actors affecting Microway	ve measurements: Surface	
roughness. Rada	rs catering mechanis	rs catering mechanism.		
ii. Radar Wave bin	ds, Side looking Air	borne radar (SLAR) syste	ms, Synthetic Aperture	
Radar (SAR).	· 0			
iii. Spectroscopy, H	lyper spectral vs. N	Multi spectral imaging, S	Spectral reflectance's, Spectra	

	Libraries – absorption process.				
UNIT	UNIT V: REMOTE SENSING SYSTEM APPLICATIONS				
i.	Advantages and Disadvantages of Remote Sensing, Applications of - Multi spectral				
	imaging,				
ii.	Microwave imaging and Hyper spectral imaging, Visual image analysis for land use/land				
	cover mapping,				
iii.	Geological and soil mapping, agriculture applications, forestry applications and water				
	resources applications				
Books	Recommended				
1.	M.Anji Reddy, Text book of Remote sensing and GIS by, BSP Publications, Hyderabad,				
	2001.				
2.	Lillesand, T.M. and Kiefer R.W. Remote Sensing and Image Interpretation, John Wiley				
	and Sons, Inc, New York, 1987.				
3.	Remote Sensing: Principles and Interpretation by Floyd F. Sabins, 1997.				
4.	Remote Sensing of the Environment: An Earth Resource Perspective by John R. Jensen,				
	2009.				

Course Title SURVEYING, PHOTOGRAMMETRY AND CARTOGRAPH				
Course code	FCM-103 No of credits 04			
Course coue Centre/ Denartment	Centre for Environment IST INTUH			
Program	M Tech : Environmental Geomatics			
Course type	Core Course III			
Course outcomes	At the end of the course. The student will be able to			
(COs)	C113.1: Discuss photogrammetric surveys related to hydrographic,			
	mining and cadastral surveys.			
	C113.2: Demonstrate various surveying and mapping technologies			
	connected with elevation, contour survey, trigonometric leveling.			
	C113.3: Focus on Modern surveying trends using GPS, ETS and digital			
	cartography.			
	C113.4: Tabulate various types of aerial cameras in relief displacement			
	and flight planning			
	C113.5: Evaluate parallax equations and height determinations.			
UNIT I: INTRODUCT	TON TO SURVEYING AND CARTOGRAPHY			
i. Datum and Refe	rence System, horizontal data and Vertical data			
11. Topographical s	urveys, Photogrammetric surveys			
iii. Engineering surveys:- Hydrographic surveys, Mine surveys, Cadastral surveys				
	G AND MAPPING:			
1. Conventional ma	apping versus Digital mapping, list of mapping organizations,			
Classification of	maps.			
ii. Control Survey:	Horizontal, vertical and both, Contour survey and Depiction of heights.			
iii. Introduction to	levation Determination, Systematic Errors in Differential Levelling			
iv. Random Errors l	In Differential Levelling, Error Propagation in Trigonometric Levelling			
UNIT III: MODERN	FRENDS IN SURVEYING AND MAPPING:			
i. Global Positi	ioning System for ground control and extension,			
ii. Total station	system for detail surveying,			
iii. Digital Phot	ogrammetric Survey,			
iv. Remote Sen	sing, Digital Cartography			
v. Geographica	al Information System.			
UNIT IV: BASICS OF PHOTOGRAMMETRY:				
1. History of Pl	notogrammetry, Definition and terminology,			
11. Geometry and Types of photographs, Photographic scale, relief displacement,				
photographic overlaps,				
in. I ypes of aerial cameras, ofound control, Photo mosaics.				
v Specification for Aerial Photography				
UNIT V: PHOTOGRAMMETRY AND CONSIDERATIONS.				
i. Stereo photo	grammetry introduction,			
ii. Parallax eou	ations and height determination			
iii. Overview on	applications of Photogrammetry			

- Geo-informatics for Environmental Management by M. Anji Reddy, BS Publications, 2nd edition, 2004.
- 2. Text book of Photogrammetry by P.R. Wolf, 2nd edition.
- 3. Surveying and Mapping, Volume I and II by David Clarke, 1996.
- 4. Manual of Photogrammetry American society of Photogrammetry & R.S by Albert.D, 1952

Course Title	DIG	ITAL IMAGE PROCES	SSING	
Course code	EGM-104	No. of credits	04	
Centre/ Department	Centre for Environmen	t . IST. JNTUH	•	
Program	M. Tech : Environmen	tal Geomatics		
Course type	Core Elective IA			
Course outcomes	At the end of the cour	se. The student will be a	ble to	
(COs) C114.1: Illustrate satellite data acquisitions, in			age display subsystems	
and file formats				
C114.2:Correlate sensor calibration and image enhancement techni			nhancement techniques	
C114.3: Compare various image filtering techniques and arithm			hniques and arithmetic	
	operations.	0 0	1	
	C114.4: Prioritize vari	ous techniques of image	classification techniques	
	for accuracy assessmen	.t.		
	C114.5: Give reasons	for integration of GIS in	image classification and	
	software's related to in	age classification.		
UNIT I: DIGITAL C	COMPUTERS AND IM	AGE PROCESSING		
i.	Introduction: Informati	on Systems – Encoding ar	nd decoding,	
modulation, Satellite data – acquisition, storage and retrieval – generation of data produce			eration of data products	
digital data form	ats.			
ii.	Computer basics: Hard	ware and Software, Netwo	orks, Image Display	
Subsystem, Colo	or Display System, Hard	copy System,		
iii. Data Format for	Digital Satellite Imager	y, Image file Format and I	Data Compression	
UNIT II : PROCESSII TECHNIQUES	UNIT II : PROCESSING OF REMOTE SENSING DATA AND IMAGE ENHANCEMENT TECHNIOUES			
i. Cosmetic Operations- Missing Scan Lines. De –stripping Methods. Geometric Corrections				
and Registration		, II C	,	
ii. Coordinate Tran	sformations, Atmosphered	ric Correction Methods,	Illuminations and View	
Angle Effects,				
iii. Sensor Calibratio	on and Terrain Effects ar	nd radiometric correction n	nethods.	
iv. Introduction to	image enhancement, H	Human Visual Systems,	Contrast Enhancement-	
Linear Contrast	t Stretch, Histogram	Equalization, Guassian	Stretch, Pseudo Color	
Enhancement- D	ensity Slicing, Pseudo C	olor Transform.		
UNIT III: IMAGE TRANSFORMS AND IMAGE FILTERING TECHNIQUES				
i. Introduction, Ari	ithmetic Operations- Ima	ge Addition, Subtraction,	Multiplication and	
Division.	Division.			
ii. Empirically Base	ed Image Transforms- Pe	erpendicular Vegetation In	dex, Tasselled Cap	
Transformations	Transformations, NDVI.			
111. PRINCIPAL CO	OMPONENT ANALYSI	S: Standard PCA, Noise A	djusted PCA,	
Decorrelation St	retch, Hue -Saturation ar	nd Intensity Transform, Fo	urier Transform	
iv. Introduction to in	mage filtering, Low Pass	Filters- Moving Average	Filters, Median Filters,	
Adaptive Filters,	High Pass Filters- Imag	e Subtraction Method, De	rivative Based Method,	
Frequency Doma	ain Filters, Filtering for I	Edge Enhancement		
UNIT IV: IMAGE CL	ASSIFICATION AND	AUCUKAUY ASSESSN	LEIN I	
1. Introduction, Ge	ometrical Basis of Class	ification,		

Unsupervised classification, Supervised Classification Training Samples, Statistical

ii.

Parameters and Classifiers, Other Approaches to Image Classification, Feature Selection, **Contextual Information** Image classification accuracy assessment, Performance analysis, Various Band Data for iii. Land use, Land Cover Classification System with Case Studies. **V: IMAGE CLASSIFICATION AND GIS INTEGRATION** UNIT Image Classification and GIS, i. Integration and Linkage. Software: ii. ERDAS, EASI /PACE, Geomatica and ENVI. Books Recommended 1. M. Anji Reddy, Y. Harishanker - Digital Image Processing, B.S. Publications, Hyderabad, 2^{nd} edition. 2. John, R. Jensen, Introductory Digital Image Processing - Prentice Hall, New Jersey, 1986. 3. Robert, A. Schowengergt. Techniques for image processing and classification in Remote Sensing, 1983. 4. Hord, R.M. Digital Image Processing, Academic Press Pub. 1982. 5. Paul. M. Mather & Magaly Koch - Computer Processing of RS Images- An Introduction, Wiley Blackwell publication, 4th edition, 2011

Course Title	SMART CITIES AND GIS				
Course ande	ECM 104	No of gradita	04		
Contro/ Donartmont	Contro for Environmo		04		
Department Program	M Tash : Environme	M. Tooh - Environmental Commetica			
	Core Fleetive I P	VI. TECH . ENVIRONMENTAL GEOMATICS			
Course type	At the end of the easy	nso The student will be a	hla ta		
$(C \cap s)$	C11/1: Categorize t	At the end of the course, the student will be able to			
(COS)	storage	114.1: Categorize theoretical models of GIS, GIS data inputs and			
	C114.2: Analyze data	C114.2: Analyze data editing/streaming with respective to the accuracy			
	precision and quality.				
	C114.3: Integrate var	rious data modeling, sim	ulation with respect to		
	C1144 Theorize t	he institutional public	and participation of		
	government in buildin	the smart cities	and participation of		
	C114.5 : Justify the im	portance of transformation	al water distribution and		
	quality assurance in m	odeling smart cities.			
UNIT I: FUNDAMEN	TALS OF GIS:	0			
 Introduction, Ro Disciplines, Theoretical Levels/Scale GIS data Types Topology. GIS data Inpu Keyboard en data capture; UNIT II: GIS DATA-I Data editing, De matching and resolution, C Data Analysis- Reclassificat output and g Forestry, Ag 	ots of GIS, Overview of GIS Definitions and Models of GIS. Theo s of Measurement. , Spatial data models, t and Storage : Introd try, Manual digitizing, Storage of GIS databas EDITING, QUALITY , etecting and correcting d Rubber sheeting. Com onsistency, Completene Format and Data med ion, buffering techniqu raphical outputs. RS & riculture, water resource	f Information System, The Terminology, GIS Queri pretical Framework for O Comparison of Raster an luction, The data stream, Scanning and automatic di e. <u>ANALYSIS AND OUTP</u> errors, Data reduction and ponents of data quality, A ess, Sources of error in GIS ium conversion, spatial r ues and overlay analysis; GIS applications for enviro es, urban & Geological stud	Four Ms, Contribution es, GIS Architecture, GIS, GIS Categories, d Vector models, and Data input methods: igitizing; GPS for GIS PUT: d generalization, Edge ccuracy, Precision and ; neasurement methods, GIS output- Maps as onmental management: lies		
UNIT III: DATA MOI	UNIT III: DATA MODELING				
i. The state of G	IS for Environmental	Problem Solving. A Persi	pective on the State of		
Environment	al Simulation Modeling,	GIS and Environmental Mo	odeling,		
ii. The Role of Soft	ware Venders in Integra	ting GIS and Environmenta	l Modeling, Cartographic		
Modeling, So	cope of GIS and relatio	nship to environmental mo	odeling, data models and		
data quality					
UNIT IV: SMART CI	LIES I				
i. Benchmarks; Sn	nart city scheme; Infras	tructure pillars—Social, Pl	nysical, Institutional and		

Economic; Instruments; Demand; Citizen participation; Role of Government; conditions precedent for smart city development; Financial architecture; Industrial promotion;

ii. Smart city reference frame wok and Implementation framework; smart mobility; smart environment; smart living; role of GIS and smart services.

UNIT V: SMART CITIES II

- smart city model; principles and spatial planning; Instrumentation; Transportation; water distribution; sewage treatment; Waste management; Smart communication; Quality assurance; Resilience-- the use of IT; Energy efficiency; Optimisation techniques; Zero emissions; sustainability;
- ii. Case studies: Singapore; India; Songdo; Lavasa; and Vienna.

- 1. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2ndEdition, John H. Seinfeld and Spyros N. Pandis, 2006, ISBN 978-0-471-72018-8
- 2. Fundamentals of Atmospheric Modeling, 2nd Edition, Mark Z. Jacobson, 2005, ISBN 978-0-521-54865-6
- 3. Air Quality Modeling, Vol. I-III. Paolo Zannetti, EnviroComp/A&WMA.
- 4. Atmospheric Chemistry and Physics of Air Pollution. Seinfeld, John H., John Wiley and Sons, Inc., New York, 1986.
- 5. Introduction to Boundary Layer Meteorology. Stull, Roland B., Kluwer Academic Publishers, Norwell, MA, 1988.

Course Title	CLIMATE (CHANGE AND SUSTAIN	ABLE DEVELOPMENT			
Commence	ECM 104					
Course code	EGNI-104		04			
Centre/ Department	Centre for Envir	onment, IST, JNTUH				
Program	M. Tech : Envir	conmental Geomatics				
Course type	Core Elective 1	- C				
Course outcomes	At the end of th	e course, The student will	be able to			
(COs)	C114.1: Categor	rise the role of aerosols and	d radiative effects of aerosols			
	on global climat	e change.				
	C114.2: Elabora	te changes in global climate	e and evaluate climate change			
	policies					
	C114.3: Debate	the impact of ecosystem, w	vater resources developmental			
	planning and the	ar adaption on climate chan	ge.			
	CI14.4: Infer	GHG management, inorga	nic carbon sequestration on			
	mitigation of clin	mate change.	1 1			
	CI14.5: Recom	mend climate modelling and	d early warning systems using			
	GSI towards St	ATE CHANCE	iew of SDG's			
	ION IO CLIM	AIE CHANGE	·			
1. Introduction to atmospheres: vertical structure and residence time.						
11. overview of aerosols, radiative effects of aerosols: direct and indirect; scattering and			indirect; scattering and			
iii Energy hydrot	iour of aerosols	ffaat				
in. Energy budget -	and greenhouse e	nect	note changes les and climate			
IV. Global climate	change- Evidence	is and Observations of chil	nate change; ice and climate			
UNIT II. CLIMATE	CHANCE CO	VEDNANCE INTEDN	ATIONAL DOLLCY AND			
I FCAL FDAMEWOU	UTANGE GU	VERNANCE, INTERN	ATIONAL FOLICY AND			
i Global Climate	Thange Governan	CA				
ii Climate change	finance sources : (Thallenges and opportunitie	s to accessing and managing			
climate finance		enancinges and opportunitie	s to accessing and managing			
iii Evaluate climate	change nolicies ·					
	and other entitie	s				
 Kvoto pr 	otocol	5				
 Ryoto pr Climate r 	negotiations					
iv. National scenari	o: NAPCC. Indi	a's commitments (INDCs)	and National Communication			
(NATCOM) init	iative Policies and	regulation : Important age	ncies and organizations			
UNIT III: CLIMATE	CHANGE IMPA	CTS AND ADAPTATION	N			
i. Climate Change Adaptation: Importance of adaptation- Adaptation options			ation options.			
ii. Linkages between climate change adaptation and development planning			t planning			
iii. approaches to climate change impacts and adaptation practices for :			s for :			
ecosvster	ns,	1				
 land use. 	,					
 water resources and 						
 human health 						
iv. Green Engineeri	ng					
UNIT IV: CLIMATE	CHANGE MITI	GATION				
i. Mitigation optio	ns :					

- technological and economic mitigation strategies:
- ii. Biological and Inorganic Carbon Sequestration
- iii. GHG Management
- iv. energy system transformation and renewable energy technologies
- v. carbon trading and carbon offsetting.
- Key sectors for low carbon development

UNIT V: CLIMATE CHANGE EARLY WARNING SYSTEM & SUSTAINABLE DEVELOPMENT

- i. Climate Modelling : global and regional climate models, its applications and importance. climate change projections.
- ii. Climate Prediction and Early Warning System: Tools and Technologies
- iii. Preparedness to Climate Change: Geospatial Approach
- iv. Human Behaviour and Climate Change
- v. Overview on SDG 2030:

References • Business and Climate – UNFCCC • GHG protocol – A Corporate Accounting and Reporting Standard • Kyoto Protocol – UNFCCC • Low carbon inclusive growth – GoI • Making Paris Work (Accepted Manuscript) • Fundamentals of Climate change • IPCC – Climate change Action, Trends and Implications for Business • India-Biennial report to UNFCC – 2015 • Global Warming – Six Indias • IPCC technical guidelines for assessing Climate change impacts and adaptation

TED talks • Can clouds buy us more time to solve climate change

https://www.ted.com/talks/kate_marvel_can_clouds_buy_us_more_time_to_solve_climate_ch ange • A critical look at Geoengineering against climate change -

https://www.ted.com/talks/david_keith_s_surprising_ideas_on_climate_change • Let's prepare for our new climate(Adaptation) - https://www.ted.com/playlists/78/climate_change_oh_it_s_real **Documentaries** • Before the flood (2016) • An inconvenient truth (2006) • National Geographic: Siz Degrees Could Change the World (2007) • An Inconvenient Sequel: Truth to Power (2017)

Course Title	PROGRAMM	ING WITH OPEN SOURCE GIS				
Course code	EGM-105	No. of credits 04				
Centre/ Denartment	Centre for Environment, IST, JNTUH					
Program	M. Tech : Environmental Geomatics					
Course type	Onen Elective – I A					
Course outcomes	At the end of the course. The student will be able to					
$(C \cap s)$	C115 1. Classify G	115 1. Classify GUI application debugging and console applications				
(COS)	C115.1. Classify COT application, debugging and console applications					
	C115.2. Distinguish Console rasiel/vector level operations.					
	C115 4. Discuss fu	indementals of Web GIS WFS WMTS				
	C115 5. Evaluating	a the use of Geo server and open layers ion creative				
	response applicatio	ns				
	response applicatio					
i Principles of O	biect Oriented Pro	gramming - C# - example programmes - console				
annlication -	GIII application - de	$\frac{1}{2}$ bugging – deployment				
application -		cougging – deployment				
i Consola level l	Paster operations:	Introducing GDAL OSSIM format translations				
1. Console level	Asier operations.	introducing ODAL - OSSIW, format translations,				
geometric co	a an image alin ir	nages altering the radiometric quantization pyramid				
building Ka	ng an innage, crip in mal basad imaga ni	mages, alterning the radionneuric quantization, pyrainid				
MODIS / Di	ritalClaba / Santinal	imagory)				
ii Console level Vec	star operations: Introd	linagery)				
create KML fi	les burning vector dat	ta onto raster (Data to be used: Open Source Maps)				
	ies, building vector du	a onto fusici (Data to be used. Open source maps)				
UNIT III:						
i. Building map	applications - using	g MAPWINGIS: create a map, adding tool bar for				
standard mar	operations. create C	GUI, load GIS data into application programmatically				
1	I ,					
ii. Building applica	ii Building applications: To load vector data create basic symbology change the feature					
symbology, a	add labels, create ES	RI Shapefile and add a feature				
5 - 657	,	1				
iii. GUI application	for handling raster d	ata: Load a DEM file with custom colour-table,				
getting the m	etadata such as cell	size, corner coordinates, read and display the cursor				
coordinates,	read the map project	ion				
	110					
UNIT IV:						
i. Web GIS - Web	GIS Fundamentals.	Over view and Types of OGC Web Services, Web Mar				
Service (WN	Service (WMS). Web Feature Service (WFS). Web Coverage Service (WCS). We					
Processing S	ervice (WPS), Web]	Map Tile Service (WMTS)				
-0 -		1 /				
UNIT V:						
i. Geo Server –On	en Source Geo Spat	ial Tool, Install Geo Server. Loading the data into Geo				
Server, OGC	protocols. Sample d	lata access using Geo Server.				
ii. Open Lavers - I	ntroduction to Open	Lavers, Java Script Library for Open Lavers, Creating				
	na sudenon to open	Lujeis, sura sempi Lionary for open Layers, creating				

Sample Maps using Open Layers, Sample Open Layers Map creationusing data of Geo Server, Applying Custom Styles, Working with Layers, Creating Responsive Applications with Interaction and Controls, Controlling the Map, Open Layers for Mobile, 3D rendering with Cesium.

0 7.4			
Course little	GEODETIC TECHNIQUES AND GNSS		
Course code	EGM-105 No. of credits 04		
Centre/ Department	Centre for Environment, IST, JNTUH		
Program	M. Tech : Environmental Geomatics		
Course type	Open Elective – I B		
Course outcomes	At the end of the course, The student will be able to		
(COs)	C115.1: Inspect the problems of geodesy, ellipsoid revolution and satellite geodesy		
	C115.2: Discuss on global navigation system, its advantages and limitation		
	C115.3: Simplify GPS codes, receivers, pseudo ranging system		
	C115.4: Test various models of DGPS and their accuracies		
	C115.5: Plan geodetic control surveys for defense, vehicle tracking and		
	navigation		
UNIT I: INTRODUCT	ſION		
i. Definition of Geo Rotational Ellipso Geodesy, reference	odesy- problems of Geodesy- Ellipsoid of Revolution- coordinate system of soid and spatial Ellipsoid- computations on the Ellipsoid- Gravity- Satellite nee surface, Geoid models- Indian datum- World Geodetic System.		
UNIT II: GLOBAL NA	AVIGATION SATELLITE SYSTEM (GNSS)		
i. Global Positionin measurement stra space geodetic te GLONASS, GAI	Global Positioning System (GPS), Description of the System and their orbits, GPS measurement strategies; Advantages and limitations of GPS, reference frames and other space geodetic techniques (satellite & lunar laser ranging, VLBI, Doppler orbitography, GLONASS, GALILEO).		
UNIT III: GPS SIGNA	AL STRUCTURE		
i. Carriers, GPS codes: C/A, P, navigational message, GPS receiver: Types and Structure of receivers, Principles of GPS position fixing: Pseudo ranging. Determination of GPS satellite coordinates, Types of ephemerides, Data Pre-processing, GPS data formats.			
UNIT IV: DIFFEREN	TIAL GPS		
i. Principles of DG	PS, Real Time Kinematics		
ii. Various modes an	nd applications of DGPS		
iii. Enhancement of A	Accuracy.		
UNIT V: APPLICATIONS			
i. Geodetic contro	ol surveys, Cadastral surveys, Photogrammetry, Remote sensing,		
Engineering and Vehicle tracking	monitoring. Military applications, Geographical Information System, and car navigation, LBS and special applications.		
Books Recommended			
i. Linear Algebra, 1997.	Geodesy and GPS, Gilbert strang Kai Borre, Wellesley- Cambridge press,		
ii. Satellite Geodes	y by Gunter Seeber, 1 st eition, Walter de gruzter Gmbtl & co.KG, 10785		

	Berlin, 1993.	
iii	Essentials of GPS by N K	Aorawal

- iii. Essentials of GPS by N.K. Agrawal, spatial network Pvt.Ltd. Hyderabad, 2004.
- iv. Geo-informatics for Environmental Management by M. Anji Reddy, BS Publications, 2nd edition, 2004.

Course Title	IMAGE PROCESSING AND FEATURE EXTRACTION LAB		
Course code	EGM-106 No. of credits 04		
Centre/ Department	Centre for Environment, IST, JNTUH		
Program	M. Tech : Environmental Geomatics		
Course type	LABORATORY – I		
Course outcomes	es At the end of the course, The student will be able to		
(COs)	C116.1: Isolate the various thematic layers using SoI toposheets and		
	satellite images		
	C116.2: Establish the error free satellite images for classification		
	C116.3: Determine the image processing techniques and implementation		
	in preparation of various maps.		
	C116.4: Estimate the LULC classification and distinguish the supervised		
	and unsupervised classification using digital image processing		
techniques.			
C116.5: Evaluate the different features in the satellite image a			
	classification categories.		
THEMATIC MAPPIN	HEMATIC MAPPING:		
Study of Toposhe	• Study of Toposheet		
• Base map prepara	Base map preparation		
Road network	Road network		
• Drainage			
• Watershed			
 Slope 			
 Land use/land co 	ver		
Geomorphology			
DIGITAL IMAGE PR	OCESSING on ERDAS, Arc GIS and ENVI:		
 Loading of digita 	al data and extraction of study area		
Geometric Corre	ection		
Image rectificati	on		
Filtering Technic	ques		
Image classificat	tion - Supervised and Unsupervised Classification		
Map Composition	Map Composition and Output Generation		
· ·	-		

Course Title	DIGITAL PHOTOGRAMMETRY LAB			
Course code	EGM-107 No. of credits 04			
Centre/ Department	Centre for Environment	, IST, JNTUH		
Program	M. Tech : Environment	al Geomatics		
Course type	LABORATORY - II			
Course outcomes	At the end of the course, The student will be able to			
(COs)	C117.1: Practice the photogrammetric workstation and feature extraction			
	from the images.			
	C117.2: Survey the terrain models semi automatic building extraction			
	practices.			
	C117.3: Evaluating the features in the images and their properties.			
	C117.4: Create the triangulation, Ortho rectification and mosaicking			
	C117.5: Estimate the F	Features & its properties	using three dimentional	
	Analysis			

Digital Photogrammetry:

LPS and DATEM:

- Digital Photogrammetric Stereo Workstation: hardware, viewing system, measurement system, feature extraction, vector information
- Breaklines for automatic digital terrain model extraction
- Connection to CAD systems
- Automatic generation of terrain models: image matching procedures, analysis
- Semi-automatic building extraction: matching procedures
- Measurement of simple and complex building structures
- Orthophoto production and ortho mosaicking: handling of image blocks, geometric radiometric adjustment and tools, examining typical problems in different data sets

M. TECH. - ENVIRONMENTAL GEOMATICS **COURSE STRUCTRURE** I YEAR **II SEMESTER**

Course Title	GEOGRAI	PHICAL INFORMATION	SYSTEMS
~ .			
Course code	EGM-201 No. of credits 04		
Centre/ Department	Centre for Environment	: , IST, JNTUH	
Program	M. Tech : Environment	tal Geomatics	
Course type	Core Course - IV		
Course outcomes	At the end of the cours	se, The student will be a	ble to
(COs)	C121.1: Illustrate Fun	damental operations of	GIS in Mapping, Data
	structure, and analysis of	of spatial and attribute dat	a.
	C121.2: Correlate din	rectionality and spatial	arrangement of liner,
	theissen polygons, in m	easuring distances.	
	C121.3: Discriminate	surface mapping and d	igital elevation models,
	choropleth maps, and ov	verlay analysis.	
	C121.4: Theorize role	e of GIS in environm	ental and cartographic
	modeling.		
	C121.5: Compare inte	grated hydrological and	water quality mapping
	with respect to water	sheds. Compare impact	of industrial sites on
	environment and ecolog	gical modeling.	
UNIT I: FUNDAMEN	TALS OF GIS:		
i. Map – scale, pro	ale, projection and symbolism. GIS - Introduction, definition and terminology,		
categories, comp	ponents, fundamental operations, functional elements.		
ii. Data structures,	tructures, data models, GIS data, acquisition, input, storage, output generation. Data		
preprocessing, d	preprocessing, database management, integrated analysis of spatial and attribute data.		
UNIT II: GIS S	SPATIAL ANALYSIS	S , MEASUREMEN	T AND SPATIAL
ARRANGEMENT:			
i. Introduction, De	efining spatial objects - point, line and area objects based on their attributes,		
higher level poir	nt, line and area objects. Measuring length of linear objects, measuring		
polygons, measu	uring shape, measuring distance.		
ii. Classification –	Principles, Neighborhood functions, Polygonal neighborhoods, Buffers.		
Spatial Arranger	nent - Point patterns, Theissen Polygons, Area patterns, Linear patterns,		
Directionality of	Linear and Areal objects, Connectivity of Linear objects, Routing and		
allocation.			
UNIT III: STATISTIC	CAL SURFACES AND	OVERLAY ANALYSIS	:
i. Surface mapping	g, sampling the statistical	surface, Digital Elevation	n Model (DEM).
Internolation-lir	pear and non-linear uses	and problems	

ii. Terrain reclassification – steepness of slope, aspect, shape or form. Discrete surfaces - dot distribution maps, choropleth maps. Cartographic overlay, point-in-polygon and line-in-polygon operations, Polygon overlay, Automating point-in-polygon and line-in-polygon procedures in Raster, Automating Polygon overlay in Raster, Automating vector overlay, types of overlay.

UNIT IV: DATA MODELING:

- i. The state of GIS for Environmental Problem Solving, A Perspective on the State of Environmental Simulation Modeling, GIS and Environmental Modeling
- **ii.** The Role of Software Venders in Integrating GIS and Environmental Modeling, Cartographic Modeling, Scope of GIS and relationship to environmental modeling, data models and data quality.

UNIT V: INTEGRATED MODELING USING GIS:

- i. Hydrological Modeling water quality modeling, watershed management and modeling, saltwater intrusion models.
- ii. Land-surface-subsurface Process Modeling pipeline alignment studies, solid and hazardous waste disposal site selection,
- iii. Zoning atlas for industrial siting, environmental information system development. Ecosystem modeling, risk and hazard modeling.

- 1. M.Anji Reddy, Text book of Remote sensing and GIS by, BSP Publications, Hyderabad, fourth edition..
- 2. Fundamentals of Geographic Information Systems by Michael N DeMers. Published By john Wiley & Sons Inc., 3rd edition, 2008.
- 3. Environmental Modeling with GIS, Michael F. Autor Goodchild, Bradley O. Parks, Louis T. Stewart, publisher- Oxford university press, 1993.
- 4. Geographic Information Systems: A Management Perspective by Stan Arnoff, WDL publications, 1989.

O T '4				
Course litle	ENVIRONMENTAL IMPACT ASSESSMENT (EIA)			
Course code	EGM-202	No. of credits	04	
Centre/ Department	Centre for Environmen	Centre for Environment , IST, INTUH		
Program	M. Tech : Environmer	tal Geomatics		
Course type	Core Course - V			
Course outcomes	At the end of the cour	se, The student will be a	able to	
(COs)	C122.1: Direct, Indirect	ct, cumulative and induce	ed environmental impacts	
	at Regional, sectoral ar	nd project level.		
	C122.2: Data products	s, thematic maps, collate	ral data in planning and	
	management of baselin	e data acquisition.		
	C122.3: Screening of	environmental clearan	ce, for category B&B2	
	industries and feasibilit	y studies.		
	C122.4: Predicting im	pact of Air, water, Nois	e, Socio economic status	
	C122 5: Environment.	al management plang of	a mission controls and	
	green belt developmen	t and hazardous wastes	i chiission conuois and	
UNIT I. CONCEPTI	AL FACTS OF EIA	and nazardous wastes.		
i. Introduction. D	efinition and Scope of E	IA. Objectives in EIA. F	Basic EIA Principles, and	
Classification of	of EIA: Strategic EIA (S	EIA). Regional EIA. Sec	ctoral EIA. Project Level	
EIA and Life	EIA and Life Cycle Assessment, Project Cycle, Grouping of Environmental Impacts			
Direct Impacts	, Indirect Impacts, Cumu	lative Impacts and Induc	ed Impacts. Significance	
of Impacts: Cri	teria/Methodology to Dete	ermine the Significance o	f the Identified Impacts.	
UNIT II: BASELIN	E DATA ACQUISITI	ON, PLANNING AND	MANAGEMENT OF	
IMPACT STUDIES	MPACT STUDIES			
i. Environmental	Environmental Inventory, Data Products and Sources: thematic data, topographical data,			
collateral data a	collateral data and field data. Environmental Baseline Monitoring (EBM), Preliminary			
Study to determ	Study to determine impact significance, Environmental Monitoring network Design,			
Monitoring Sta	Stations, Air quality data acquisition, Water Quality data acquisition, soil data,			
Components: S	economic data and biological data acquisition. Impact on Environmental			
identified Impa	Significance of impacts, Uniteria to determine the significance of the			
ii. Conceptual Ap	oroach for Environmental	Impact Studies, Proposal	Development.	
Interdisciplinar	v Team Formations Team Leader Selection and Duties General Study			
Management, F	iscal Control.		, <u>,</u>	
UNIT III: OPERA	TIONAL ASPECTS	OF EIA AND METH	HODS FOR IMPACT	
IDENTIFICATION	DENTIFICATION			
i. Screening: App	ing: Application for Prior Screening for Environmental Clearance, Screening Criteria			
Category A Pro	Category A Projects, Category B Projects, Criteria for Classification of Category B1 and B			
Projects, Consi	Projects, Consistency with other Requirements and Siting Guidelines. Scoping: Identificatio			
of Appropriate	ropriate Valued Environmental Components (VEC), Identification of Impacts			
Information in	orm 1, Structure of a Pre-feasibility Report. Public consultation: Appraisal			
Decision Makin	ig, Post-clearance Monito	g, Post-clearance Monitoring Protocol.		
11. Background II	normation, Interaction-	viatrix Niethodologies:	simple matrices, steppe	
matrices, devel	opinient of a simple matri	x, other types of matrices	, summary observations of	

Course Title	APPLIED GEOMATICS		
Course code	EGM-203 No. of credits 04		
Centre/ Department	Centre for Environment	, IST, JNTUH	
Program	M. Tech : Environment	al Geomatics	
Course type	Core Course - VI		
Course outcomes	At the end of the course, The student will be able to		
(COs)	C123.1: Validate Air and space borne sensors with respect to spectral		
	and radiometric resolutions. Appraise satellite navigation systems, outer		
	space explorations, chadrayan and Mangalyan.		
	C123.2: Formulate spectral information in estimation of vegetative		
	indexes, precision agriculture, and crop and forest management.		
	C123.3: Illustrate role of remote sensing and GIS in Geological mapping,		
	and identification of spectral signature on mining.		
	C123.4: Assess crop type	pe classification and estin	mates, watershed impact
	on soil erosion and wate	r quality modeling.	
	C123.5: Analyze spectral response on upland and wetland vegetation		
	ecosystem, urban and m	unicipal solid waste studi	es.

UNIT I: SENSORS AND SATELLITES

SENSORS AND PLATFORMS

- i. Introduction, satellite system parameters- instrumental and Viewing, Sensors- Active and passive, classification, sensor parameters- spatial, spectral and radiometric resolutions
- ii. Platforms- Airborne and Space borne, constraints of satellite geometry, effects of the local environment, common orbits and details of elevation angle and ground area, types of Scanners

SATELLITE PROGRAM'S

- i. INSAT series, IRS series, RADAR imaging satellites, other satellites, GAGAN & IRNSS satellite navigation system
- ii. Extra terrestrial exploration- chandrayaan-1 and 2 & Mangalayaan, International cooperation of ISRO, future projects of ISRO

UNIT II: SPECTRAL INFORMATION FOR SENSING VEGETATION & APPLICATIONS

SPECTRAL INFORMATION FOR SENSING VEGETATION

- i. Estimation of Vegetation Cove: Spectral Indices -Vegetation indices and vegetation descriptors.
- ii. Microwave vegetation indices- estimation of vegetation using Lidar.

INTEGRATED APPLICATIONS

- i. Detection and diagnosis of plant stress.
- ii. Precision agriculture and crop management

	"AF TO EXCLU-		
iii.	Ecosystems and Forestry Management.		
	III. SOIL SCIENCES		
<u>i</u>	Role of Remote sensing and GIS in geological studies and case studies. Evaluation of		
1.	Geological Mapping		
ii.	Introduction to Prospection Techniques, History of Remote Sensing in Geological		
	Exploration. Image Lineaments and structural origin, Prospecting, Applications of thermal		
	and Radar remote sensing in structural geology.		
<u>iii.</u>	Spectral response of Minerals, Rocks, Alterites, case studies		
UNIT ·	IV: WATER RESOURCES, AGRICULTURE AND FORESTRY		
1.	The hydrological cycle, Hillslope hydrology, The drainage basin, Channel networks,		
	Automatic derivation of calchment characteristics, The global cycle. Ground water exploration and targeting. Introduction, Characteristics, Watershed and people. Watershed		
	characteristics, watershed management and Integrated approach for sustainable planning		
	Water quality modeling. Watershed Management in India. Case studies.		
ii.	Soil and altitude, Soil and aspect, Soil and slopes, Soil landscapes, Soil erosion modeling.		
iii.	Crop type classification, area estimates, and spectral response of different crops. Crop		
	diseases and Assessment, Crop and Water management and monitoring. Advances in Crop		
	monitoring.		
UNIT	V. RESPONSE OF ECOLOCICAL EACTORS AND IMPACT STUDIES		
MOD	ELLING		
i.	Spectral response of vegetation and mapping, Ecosystem Analysis, Environmental impact		
	analysis and monitoring, Ecosystem modeling,		
ii.	Wetland mapping.		
iii.	Urban growth studies		
IV.	Municipal solid waste studies		
v. vi	Spatial Models of Ecological Systems and Process		
V I.	Spatial Wodels of Leological Systems and Trocess		
Books	Recommended		
1.	M.Anji Reddy, Text book of Remote sensing and GIS		
-	by, BSP Publications, Hyderabad, 2001.		
2.	Principles of Remote sensing, An introductory Tex		
	book by the international institute for Geo-Information sciences and Earth Observation		
3	(ITC). Satellite Technology: Principles and Applications 2nd		
5.	Edition, Anil K. Maini, Varsha Agrawal, ISBN: 978-1-119-95727-0694 pages. June 2011.		
	,,,,,,,		

Course Title	MICROWAVE AND HYPER SPECTRAL REMOTE SENSING			
Course code	EGM-204 No. of credits 04			
Centre/ Department	Centre for Environment, IST, JNTUH			
Program	M. Tech : Environmental Geomatics			
Course type	Core Elective – II A			
Course outcomes	nes At the end of the course. The student will be able to			
(COs)	C124.1: Illustrate components of Radar System and factors affecting			
	Microwave measurements.			
	C124.2: Interpret characteristics of Side looking Airborne Radar on			
	relief, soil, vegetation and urban response.			
	C124.3: Infer Passive Microwave radiometers on various ocean bound			
	satellites			
	C124.4: Categorize Hyperspectral and Microwave images and their			
	spectral reflectance curves.			
	C124.5: Choose Hyperspectral images for environmental management.			
UNIT I: INTRODUCT	ION TO MICROWAVE REMOTE SENSING			
i. Definition. Radi	ometric Quantities. Radar System Components. Source of Radiation.			
Radar Wave Bar	Radar Wave Bands RADAR Equation			
ii. Factors Affecting	g Microwave Measurement, Beam Polarization and Look Angle.			
UNIT II: SLAR, CHA	VIT II: SLAR, CHARACTERISTICS AND INTERPRETATION OF SLAR IMAGERY			
i. Definition, Rada	r working principle, range resolution, azimuth resolution, swath width			
resolution and S.	AR systems.			
ii. Slant range scale	Slant range scale distortion, ground range geometry, image displacement due to relief,			
layover, fore sho	layover, fore shorting, shadow and speckle.			
iii. Geometric chara	cteristics, Electrical characteristics, Effects of polarization, Soil response,			
Vegetation respo	onse, urban area response.			
UNIT III: MICROWA	VE SENSORS AND SATELLITES			
i. Passive microwa	ive radiometers SEASAT, SIR, ALMAZ, ERS, ENVISAT, JERS, ALOS,			
RADARSAT				
11. Applications of 1	microwave remote sensing			
UNIT IV: HYPER SPI	ECTRAL REMOTE SENSING			
1. Hyper spectral if	Hyper spectral imaging, imaging spectrometers, principles of spectroscopy			
11. Hyper spectral v	Hyper spectral vs multi spectral imaging.			
III. Spectral terrecta	nces, spectral noraries, absorption process, analysis of spectral curve.			
UNIT V: SATELLITE	S AND APPLICATIONS			
i. Hyper spectral sa	atellite systems viz., AVIRIS, HYMAP, HYPERION			
ii. Applications of l	of Hyper Spectral Remote Sensing in the field of Environmental			
management.	jement.			
Books Recommended				
i. Textbook of Ren	note Sensing and Geographical Information Systems M.Anji Reddy, BS			
Publication, 3 rd e	edition, 2008.			

- ii.
- Remote sensing and Image interpretation by Thomas Lilliesand and Ralphw. Keifer Published by John Wiley &Sons.6th edition, 2007. Remote sensing-Principles and interpretation by Floyd F Sabins.Jr. Published by Freeman & Co., New York, 3rd edition, 2003. iii.

Cours	se Title	CADASTRAL, LAND USE PLANNING AND MANAGEMENT		
~				
Cours	se code	EGM-204	No. of credits	04
Centr	e/ Department	Centre for Environn	ent, IST, JNTUH	
Progr	am	M. Tech : Environr	nental Geomatics	
Cours	se type	Core Elective – II	3	
Cours	e Program	At the end of the co	ourse, The student will	be able to
outcol	mes (COs)	C124.1: Identify m	ethods and tools for Lar	id use, built environment, and
		zoning criterion.		
		C124.2: Classify re	elevance of Geomatics i	n evaluating Land suitability,
		capability in decisio	n making system.	1
		CI24.3: Discuss	sustainability of La	nd management, Net farm
		profitability, and Pr	nciples of ecology for p	lanners.
		C124.4: Assess cor	cepts of sustainable pla	ining towards smart cities.
		C124.5: Compose	Orban growth models	in assessing alternative land
UNIT	ι. ιντρορι	CTION TO LAN	ai modening. D LISE AND LANI	D COVED TYPES AND
DIST	RIBUTION	CHON IO LAN	D USE AND LAN	COVER THES AND
DIST	Study of the met	hods and tools for ma	naging land use and the	built environment
	Comprehensive	Plan Zoning Criteri	and guidelines region	and state-level plans and
	socio economic	issues	and guidennes, region	iai, and state level plans and
socio economie issues.				
UNIT II: GEOMATICS FOR LAND USE PLANNING				
i.	Land use System	tem: Environmental inputs and impacts, economic inputs and outputs. Role of		
	Geomatics in La	nd Evaluation and Suitability for land use planning.		
ii.	Land Capability	classification and preference of land use.		
iii.	Decision Suppor	rt System for land use planning		
UNIT	NIT III: ECOLOGICAL PRINCIPLES FOR PLANNERS			
i.	Overview of ecology and the environment. Important ecological issues in land use			
	for environmental planners.			
ii.	Sustainable land	I management: Crop Yield, Nutrient Balance, Maintenance of Soil Cover,		
	Soil Quality/Qua	antity; Water Quality/	Quantity; Net Farm Pro	fitability; Conservation
	Practices			
UNIT	IV: SUSTAINA	BLE URBAN PLAN	NING & SMART CIT	IES
i.	Concept of Susta	ainability in planning	practice.	
ii.	Objectives of	(i) urban sustainability initiatives ;(ii)Transportation, solid waste		
	reduction;(iii) C	Climate change initiatives; and (iv) smart cities policies.		
UNIT	V: LAND USE	AND ENVIRONME	NTAL MODELLING	
1.	Fundamentals of	GIS and statistics.	111, 1	1 00 1
11.	GIS-based land	S-based land use and urban growth models, basins (stream and runoff water quality		
	model)	1		1
111.	Visualization an	a impact assessment i	nodels for alternative la	na use
Books	<u>Recommended</u>			

Course Title	GEOMATICS FOR DISASTER RISK REDUCTION &		
	MANAGEMENI		
Course code	FCM 205 No. of credits 04		
Contro/ Dopartmont	Centre for Environment IST INTLIH		
Program	M Tech : Environmental Geomatics		
Course type	Onen Elective – II A		
Course outcomes	At the end of the course. The student will be able to		
(COs)	C125.1: Relate definitions, levels of disaster risks and phenomena.		
(005)	C125.2: List Disaster trends at Global and regional levels differentiate		
	natural and manmade disasters.		
	C125.3: Compare disaster risk vulnerabilities, hazard mapping		
	prevention and mitigation of disasters.		
	C125.4: Assess impact of climate change, Biodiversity loss on		
	desertification and disasters.		
	C125.5: Evaluate Disaster Management Policy, organizational frame		
	work in preparation of disaster management plans.		
UNIT I: UNDERSTA	NDING ECOSYSTEM AND DISASTER PHENOMENA		
i. Concept and de	finitions and functions of different terms of disaster and Ecosystem,		
Approaches to u	understand disaster phenomena (natural science, applied science,		
progressive and	holistic approaches)		
ii. Parameters of L	ii. Parameters of Disaster Risk, Levels of disaster as per national guideline.		
UNIT II: OVERVIEW, CLASSIFICATION, CHARACTERISTICS, PROBLEM AREAS OF DISASTERS			
i. Disaster trends	Disaster trends (Global, national and regional), Selected models for understanding the		
causes of disast	causes of disaster and disaster risk mitigation, Classification of hazards (natural and		
manmade),Resp	manmade), Response time, frequency, forewarning, exposure time of different hazards.		
ii. General charact	General characteristics and problem areas of different natural and man-made hazards (e.g.		
flood, erosion, e	earthquake, landslide, lightning, tropical cyclone, drought, civil unrest		
etc.),Common a	approaches to study natural and manmade hazards; vulnerability and		
disasters.			
UNIT III: DISASTEF	R RISK MITIGATION		
i. Disaster risk as	sessment (Hazard-Vulnerability-Capacity analysis), Hazard mapping and		
forecasting; Print	nciples and aspects of Disaster prevention, Disaster mitigation, Preparedness		
for damage mit	gation and coping with disasters; Capacity building for disaster/damage		
mitigation (stru	ctural and non-structural measures);		
ii. Contingency pl	anning for damage mitigation of different hazards; Relevance of indigenous		
knowledge, app	knowledge, appropriate technology and local resources in disaster risk mitigation		
iii. Community bas	ii. Community based disaster risk reduction mechanism; Counter disaster resources and their		
roles.			
UNIT IN. ENDON	MENT AND DICACTEDC		
i Environment	WENI AND DISASTERS		
1. Elivironment, e	Global water crisis and DRR		
ii Desertification	soil erosion and DRR' ecosystems for urban risk reduction. Industrial		
	son crosion and DAR, coosystems for urban fisk reduction, industrial		

hazards and safety measures; Post disaster impact on environment; Impact of developmental projects on disaster risk; Aspects of environmental management for disaster risk reduction; Environmental Impact Assessment (EIA).

UNIT V: PLANNING FOR DISASTER MANAGEMENT

- i. Concept of spatial planning for DRR; Community-hazard profile in India; Different phases of Disaster Management (DM cycle; Relief mechanism (needs assessment, relief administration and distribution, management of relief centres, external support etc.);Disaster Management Act (2005); Disaster Management Policy (2009); organizational framework for disaster management in India.
- ii. **Case studies**: Hazard mapping of vulnerable areas, Vulnerability assessment (physical, social, organizational, economical, technological), Risk mitigation planning for vulnerable areas.

Books Recommended

- 1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- 2. Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.
- 3. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 4. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 5. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

Parasuraman, S & Unnikrishnan, P. V. (ed.), India Disasters Repot Towards a policy initiative. Oxford, 2000

Course Title	DIGIT	TAL PHOTOGRAMMETRY	
Course code	EGM-205	No. of credits 04	
Centre/ Department	Centre for Environment	, IST, JNTUH	
Program	M. Tech : Environmenta	al Geomatics	
Course type	Open Elective – II B		
Course outcomes	At the end of the course	e, The student will be able to	
(COs)	C125.1: Summarize	digital photogrammetry Vis-à-vis Analogue	
	photogrammetry, and various camera systems and principles of image		
	scanning methods.		
	C125.2: Distinguish ima	age measurement, scales, and digitizing methods.	
	C125.3: Justify procedu	ures in image transformations, image matching	
	techniques, and use of G	PS in adjustments.	
	C125.4: Theorize princip	ples of visualization in DEM, DIM & DSM.	
	C125.5: Prove role of L1	DAR in range measurements and accuracies.	
UNIT I: INTRODUCT	TON TO DPW SYSTEM		
1. Definition of	Digital Photogrammetry	& Its Development, Digital Photogrammetry	
V1S-A-V1S A	nalogue Photogrammetry,	, Advantages of Digital Photogrammetry,	
11. Hardware &	Software Components of	DPWS, various inputs For Digital	
Photogramm	etry: Scanned Photo, Digi	ital Camera Data, Remote Sensing Data, Lidar	
Data, video Dringinio of	Camera Data, Basic Consi	ration of Photogrammetric Scanners:	
Frinciple of	Image Scanning, Configuration of Scanners, Method of Scanning, File		
	FORMAT AND SIZE.		
i i i i i i i i i i i i i i i i i i i		Introduction to Coordinate Systems And	
Image Measu	rements Simple Scales F	For Photographic Measurements Measuring	
Photo Coord	o Coordinates With Simple Scales. Trilaterative Method of Photo Coordinate		
Measuremen	nent. Measurement of Photo Coordinates With Tablet Digitizers. Mono		
Comparator	· Measurement of Photo Coordinates		
ii.		Refinement of Measured Image Coordinates:	
Distortions of	f Photographic Films and	Paper, Shrinkage Correction, Lens Distortions	
Corrections,	Atmospheric Refraction C	Correction, Earth Curvature Correction,	
Reduction of	Coordinates to an Origin	at the Principal Point.	
UNIT III: ORIENTAT	TION PROCEDURES IN	N DIGITAL PHOTOGRAMMETRY	
i. Inner orientation	(IO), Transformation & Its	s Suitability, Exterior Orientation (EO), Auto Tie	
Point Genera	tion, Digital Image Match	hing Process: Area Based, Feature and Relation	
Based, Coll	inearity Conditions, Blo	ock Triangulation Method and Adjustment,	
Simultaneous	us Solution for unknowns in a Block, Space Resection Method, Space Forward		
Intersection.	Use Of GPS And IMU in I	Digital Photogrammetry	
UNIT IV: 3D VISUAL	IZATION & STEREO-0	COMPILATION	
i. Principle and	l Method of 3d Visualizati	ion: Anaglyph, Polarized and Hybrid	
Techniques,	Feature Extraction, Featur	re Coding, Data Model and Feature Class.	
ii. Definition D	EM, DTM, DSM, Various	s Inputs to DEM/DTM, DTM Specification And	
Accuracy, A	pplication of DTM, Vario	ous Interpolation Techniques: Grid, TIN, Break	
Lines, Mass	Lines, Mass Points, Digital Ortho-Photo Generation and its uses.		
UNIT V: AIR BORNE	LASER TERRAIN MA	APPING (LiDAR):	
i. Introduction to	Laser ,Principle of LiDA	AR,, System Components, Range Measurements	

,LiDAR Error Sources ,LiDAR Accuracy, Applications & Advantages.

Books Recommended

- 1. Elements of Photogrammetry- Paul r. wolf, 2nd edition, 1983.
- 2. Elements of Photogrammetry with application in GIS (3rd edition)- Paul Wolf & Bon
- Dewitt, Benjamin Wilkinson, McGraw-Hill companies, incorporated, 2013, 4th edition. **Reference:** -

1. Manual of Photogrammetry – American society of Photogrammetry & R.S by Albert.D, 1952.

- 2. Digital Photogrammetry A practical course by Wilfried Linder, 3rd edition, Springer, 2009.
- 3. Digital Photogrammetry by Y. Egels & Michel Kasser, Taylor & Francis group, 2002.
- 4. Geographic information systems an introduction by Tor Bernhardsen, 3rd edition, John Wiley & Sons, Newyork, 2009.

Course Title	REMOTE SENSING FOR VEGETATION					
Course code	FCM 205	No of credits	04			
Contro/Donartmont	Centre for Envir	Contro for Environment IST INTUI				
Program	M. Tech. : Environmental Geometrics					
Course type	Open Elective II C					
Course outcomes	$\frac{\partial f}{\partial t} = \frac{1}{2} C$					
(COs)	C125 1: Relate role of remote sensing in concents of plant physiology					
(003)	C125.2: Focus on Characteristics of Electromagnetic Sources, radiation					
	Energy spectrum on vegetation					
	C125.3: Appraise radiative and back scatter phenomenon of soil, water,					
	plant canopy in microwaye regions.					
	C125.4: Devise spectral and vegetative indices for microwave and					
	LiDAR technologies.					
	C125.5: Integrate applications for detection and diagnosis of plant stress					
	and crop management.					
UNIT I: INTRODUCTION						
i. Introduction, Hi	story, introduction	on and interpretation of Rem	ote sensing,			
Concepts of Plant Physi	ology and Remote	e Sensing. Data availability				
UNIT II: BASICS	OF RADIATI	ON PHYSICS FOR R	EMOTE SENSING OF			
VEGETATION						
i. Introduction, Ra	diation characteris	stics, Electromagnetic Radia	tion, Electromagnetic			
Spectrum, Electr	omagnetic Energy	y, Sources and terminology.				
ii. Energy Interaction	ons with matter ar	nd surfaces. The radiation En	vironment. LAI.			
UNIT III: RADIATIV	E PROPERTIES	S OF VEGETATION, SOII	LS AND WATER			
1. Optical region: I	Optical region: Leaf radiative properties, radiative properties of soil and water, radiative					
properties canop	properties canopies.					
11. I hermal region:	I nermal region: Emissivity of canopy components, and canopies.					
Function: water	Function, water relations, even or tions and water loss					
UNIT IV. SPECTRAL	INFORMATIO	N FOR SENSING VECE	ΓΑΤΙΟΝ			
iii Estimation of V	UNIT IV: SPECTRAL INFORMATION FOR SENSING VEGETATION					
descriptors	descriptors					
iv. Microwave vege	tation indices- est	timation of vegetation using	Lidar.			
UNIT V: INTEGRAT	ED APPLICATI	ONS				
iv. Detection and di	Detection and diagnosis of plant stress.					
v. Precision agricu	Precision agriculture and crop management					
vi. Ecosystems and	ms and Forestry Management.					
Books Recommended						
1. Lillesand, T.M.	1. Lillesand, T.M. and Kiefer R.W. Remote Sensing and Image Interpretation, John Wiley and					
Sons, Inc, New	York, 1987.					
2. Principles of Ge	ographic Information Systems by John Jensen and Ryan					
3. Remote Sensing	3. Remote Sensing: Principles and Applications - Kindle edition by Floyd F. Sabins.					

Course Title	GIS, GNSS AND SPECTRAL ANALYSIS LAB				
Course code	EGM-206	No. of credits	04		
Centre/ Department	Centre for Environment, IST, JNTUH				
Program	M. Tech : Environmental Geomatics				
Course type	LABORATORY - III				
Course outcomes	At the end of the course, The student will be able to				
(COs)	C126.1: Planning survey using total station and hand held GPS.				
	C126.2: Describe scale, projection, and coordinate systems and explain importance of each in GIS				
	 C126.3: Creating Vector data and attribute linking C126.4: Establish the Map composition and output generation C126.5: Evaluate the spectral signatures of individual bodies. 				

GIS : Arc GIS Software-

- Scanning of maps using software
- Creating GIS data using Arc Catalog
- On Screen Digitization using Arc Map
- Addition of Attribute data to a feature class
- GPS linkage and data entry
- Data editing, manipulation and analysis using ARC GIS software
- Map Composition and Output Generation using ArcGIS software.

GNSS:

- Alignment survey by handheld GPS, DGPS
- Processing of GPS survey data with GIS software

Electronic Total station (ETS):

Survey using total station, Recording data and Plotting.

SPECTRAL SIGNATURES

- Generation of Spectral Signatures
- Analysis of the Spectra

Course Title	GEOSPATIAL TECHNOLOGY LAB				
Course code	EGM-207	No. of credits	04		
Centre/ Department	Centre for Environment, IST, JNTUH				
Program	M. Tech : Environmental Geomatics				
Course type	LABORATORY - IV				
Course outcomes	At the end of the course, The student will be able to				
(COs)	C127.1: Describe scale, projection, and coordinate systems and explain importance of each in GIS				
	 C127.2: Creating Vector data and attribute linking, Map composition and output generation C127.3: Gives better maps for easy estimation of environmental parameter changes and its consequences. C127.4: Estimation of change detection and its factors. C127.5: Evaluation of crop suitability, solid waste dumping site selection and lake restoration capacity. 				

Exercise using Geomatica, ERDAS, ArcGis, iGIS software and using different satellite datasets viz. High, Medium, Low... for

- i. Watershed development
- ii. Forest informnation & change
- iii. Agricultural information
- iv. Preparation of Village Information System
- v. Irrigation system
- vi. Urban Expantion studies
- vii. Land use Land cover assessment studies

Site suitability studies for

- i. Crop
- ii. Solid waste
- iii. Water harvesting
- iv. Lake restoration